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Abstract

Mechanical and phase equilibria in inclusion–host systems are investigated in this paper. An inclusion–host system that
is initially under lithostatic pressure and in mechanical and phase equilibria may undergo pressure–temperature change.
The new elastic and plastic equilibrium, possible viscous relaxation, and phase equilibrium are considered. The new
inclusion pressure typically differs from both the initial pressure and the pressure on the outside surface of the host. The
inclusion is under isotropic stress (a single pressure) but the host is anisotropically stressed. The relative volume change of
the inclusion differs from that of the inclusion-free host by 0:75.Pin � Pout/=Gh where Pin and Pout are the pressures on the
inside and outside surfaces of the host, and Gh is the shear modulus of the host. Different inclusions in a single host may
be under different pressures. A simple case of elastic anisotropy is also considered and the result shows that incorporation
of elastic anisotropy is necessary for accurate calculations of volume and strain effect. For inclusions with roughly constant
bulk modulus, the time scale of viscous relaxation is found to be 4�h=.3Ki/ where �h is the viscosity of the host phase
and Ki is the bulk modulus of the inclusion phase. If the host mineral does not relax viscously and does not fracture
into pieces, the host mineral partially protects the inclusion and phase transition in the inclusion–host system is partial
and spans a large T–P range even for one-component systems, in contrast to sharp phase transitions under isobaric and
isothermal conditions. For example, a graphite inclusion in a diamond host does not completely convert to diamond when
pressure on the diamond host increases. Using the chemical potential formulation of Kamb, about 1% of graphite would
convert to diamond for every 1 GPa increase in host pressure. Because the inclusion pressure may be different from the
lithostatic pressure on the host, pressure obtained from thermobarometers using inclusion–host pairs may not have depth
significance. Correct ‘reading’ of information stored by inclusion–host pairs requires an understanding of mechanical and
phase equilibria involving the inclusion and host.  1998 Elsevier Science B.V. All rights reserved.

Keywords: phase equilibra; elasticity; inclusions; host rocks; P-T conditions

1. Introduction

Mineral, melt=glass, and fluid inclusions in a host
mineral are common and have been used widely to
infer mantle processes, source conditions, and P–
T history. When an inclusion and its host mineral
form at some initial temperature and pressure re-
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ferred to as T0 and P0, the inclusion pressure may be
assumed to be the same as the confining pressure act-
ing upon the host. Subsequently when there is P–T
change, the pressure inside the inclusion is expected
to be different from that on the host if compressibil-
ities and thermal expansivities of the inclusion and
host are different. Several pioneers have studied the
mechanical and phase equilibria of inclusion–host
systems. Rosenfeld and coworkers [1–5] pointed out
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the importance of elastic effects surrounding mineral
inclusions in host minerals. They developed the null
curve technique (a null curve is a P–T curve on
which the relative strain disappears) for the inference
of P–T history of the host (see also [6,7]). Gillet et
al. [8] and Van der Molen and Van Roermund [9]
investigated the pressure inside a mineral inclusion
and used the result to model the P–T history of the
host rock based on coesite inclusions in garnet. Tait
[10] analyzed stress field surrounding melt inclu-
sions in minerals and applied the result to discuss the
selective preservation of melt inclusions in igneous
phenocrysts.

Because the host does not transmit pressure per-
fectly to the inclusion, the phase equilibria between
the inclusion and the host can be complicated. In this
work, I first examine mechanical equilibria between
the host and the inclusion including both elastic
and plastic effects. One case of elastic anisotropy
is considered. Viscous relaxation of stress is also
discussed. Finally phase equilibria between the in-
clusion and the host are investigated.

2. P–T history of inclusion–host systems

The temperature–pressure history for an inclu-
sion–host pair that formed at high T0 and P0 and
then is sampled on surface at 300 K and a host
pressure of 1 bar can be complicated. A typical T–P
history for a mantle-derived inclusion–host system
may be as follows.

(1) The inclusion is incorporated in the host at
an initial P0 (that equals both the inclusion and host
pressures) and T0.

(2) After the formation, the temperature and host
pressure may change slowly owing to mantle convec-
tion. In this process, the inclusion pressure typically
becomes different from the pressure acting on the
outside surface of the host and P0.

(3) The sample may be brought up rapidly (and
roughly adiabatically) to the surface by, e.g., kim-
berlitic eruption, so that the host pressure changes to
1 bar and the temperature does not change signifi-
cantly. The inclusion pressure can be very different
from 1 bar. Although the rapid ascent does not typ-
ically affect chemical equilibrium and hence does
not affect thermobarometry based on chemical reac-

tions, this rapid decompression causes large pressure
changes and may lead to significant deformation and
to decompressional cracks. The sample may also be
brought up slowly by tectonic movement along a
geotherm to 300 K and a host pressure of 1 bar.

(4) Samples that are rapidly and roughly adiabat-
ically brought up to the surface then rapidly cool
down on the surface to ¾300 K.

When trying to explain features related to
inclusion–host systems, it is important to bear in
mind the complexity of the P–T history and to un-
derstand which part of the P–T history caused a
given feature. Chemical reactions (especially those
that involve diffusion) and viscous relaxation can
only happen at high temperatures and when there is
enough time. On the other hand, elastic deformation,
plastic yielding, and fracturing can happen rapidly
regardless of the temperature.

3. Elastic equilibrium between the host and the
inclusion

This section presents a reanalysis of the stress
field in the host mineral and the pressure in the
inclusion mineral. The problem has been solved in
textbooks of Southwell [11] and Timoshenko and
Goodier [12], and discussed in geological literature
by Gillet et al. [8], Van der Molen and Van Roer-
mund [9], and Tait [10]. The following analysis
differs from these earlier analyses in that the temper-
ature effect is included explicitly and the non-zero
initial pressure is highlighted. Small differences with
the earlier analyses due to minor errors in them will
be pointed out. This section only treats elastic equi-
librium. Beyond-elastic processes are discussed in
the next section.

3.1. Assumptions and general analysis for elastically
isotropic inclusion and host

For simplicity, surface tension is ignored. The
inclusion and the host are assumed to be concentric
spheres (Fig. 1). Both phases are assumed to be
elastically isotropic unless otherwise specified. A
simple case of elastic anisotropy is considered later.

Following previous authors [8,9], the outer sur-
face of the host crystal is assumed to be under uni-
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Fig. 1. A spherical inclusion at the center of a spherical host. Ri

is the inclusion radius, and Rh is the host radius. Pressure in the
inclusion is defined to be Pin and that at the outside surface of
the host is defined to be Pout. The host and inclusion are assumed
to be elastically isotropic.

form isotropic stress. That is, the stress can be rep-
resented by a single pressure Pout: ¦ rr

h jrDRh D �Pout.
This assumption deserves some discussion since the
rock is a composite material and host crystal is
in contact with other elastic crystals. Observational
justification for this assumption includes the pro-
nounced birefringent halos (interpreted to be caused
by differential strain in the host mineral) often ob-
served in a host isometric mineral (such as garnet)
next to an inclusion and the absence of such pro-
nounced birefringent patterns away from the inclu-
sions (e.g., [1]). Other justifications for the assump-
tion can be made in the following cases.

(1) If there is an interconnected fluid phase
(though the amount of the fluid may be small) in
the pores of a rock, the outer surfaces of crystals will
be at uniform isotropic pressure. For rocks in the
subduction slab, this is probably the situation owing
to dehydration and decarbonation. For other rocks,
the presence of a minute amount of fluids is not
uncommon either, as evidenced by metasomatism
(sometimes cryptic).

(2) If most of the rock matrix has a lower viscos-
ity than the mineral under consideration, the outer

surface of the mineral will be roughly under uniform
isotropic pressure. This would apply to garnet and
diamond in an olivine-dominated rock since the vis-
cosity of olivine is low compared to that of garnet
[13].

In both cases (1) and (2), the stress on the outside
surface of the host mineral is expected to be isotropic
and the same as the lithospheric pressure but the
pressure in the inclusion can be different because
the host phase partially protects the inclusion. There
may be limitations to this assumption. For example,
in a fluid-free rock at low temperatures, the outer
surfaces of crystals may be under stress. The effect
of the inclusion would be to add an additional stress
field to the adjacent host. In the following discussion,
nonisotropic stress on the outer surface of the host
crystal is not considered.

Consider an inclusion–host system initially at (T0,
P0) and then brought to (T , Pout) where Pout is the
lithostatic pressure acting upon the outer surface of
the host crystal. Initially, Pin;0 D Phost;0 D Pout;0 D
P0. The temperature of the inclusion is expected to
be always the same as that of the host. The initial
radius of the inclusion is Ri0 and that of the host
is Rh0, where the subscripts i and h signify the
inclusion and the host, respectively. To be found
are the new pressure inside the inclusion .Pin/, the
new volume of the inclusion .Vi/, and the stress
distribution in the host phase around the inclusion.
The radial displacement is defined in this work as
the displacement relative to the initial condition (T0,
P0), not relative to zero stress. Hence the initial
displacement is zero. The displacement is assumed to
be small and linear to ∆P . The stress is still defined
relative to zero pressure, not to the initial pressure.
The general equation for the radial displacement at
elastic equilibrium is [11,12]:

.∆u/r D ∆u � 2

r 2
u D d

dr

�
du

dr
C 2u

r

�
D 0 (1)

where u is the displacement vector relative to the
initial state (T0, P0, Ri0, Rh0), .∆u/r is the radial
component of the Laplacian of u, and u is the radial
component of u. The solution to Eq. 1 for each of
the inclusion and host phases is:

u D Ar C B

r 2
(2)

where A and B are two constants to be determined
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for each of the inclusion and host phases. The radial
and tangential stress in each phase can be found
from:

¦ rr D �P0 C 3AK � 4BG

r 3
� 
 K (3)

¦ tt D �P0 C 3AK C 2BG

r 3
� 
 K (4)

where K and G are the bulk and shear modulus at T
(not T0) and


 D
Z T

T0

Þ dT (5)

where Þ is the thermal expansivity. If Þ is constant,
then 
 D Þ∆T . The stress equations include the
initial pressure term because the displacement is
defined relative to the initial condition (instead to
zero pressure), whereas the stress is defined relative
to zero stress.

The above treatment incorporates the temperature
dependence of the elastic constants. However, K ,
G, and Þ of the host phase (but not the inclusion
phase) are assumed to be independent of pressure or
stress so that linear elasticity theory can be applied.
The elastic constants do not depend strongly on P .
For example, K for pyrope changes by about 10%
from 0 to 4 GPa [14]. (The dependence of K and
G on temperature is also weak [15].) Furthermore,
incorporation of the pressure effect would require
much more complicated nonlinear elasticity theory.

3.2. Stress distribution in the inclusion and host

The solution of Pin (the radial stress component at
the inclusion–host boundary) depends on the proper-
ties of the inclusion and whether there are reactions
in the inclusion or between the inclusion and the
host. To determine the radius of the inclusion and
the stress distribution in the host, Pin is used as a
parameter to be solved later. All other unknowns are
expressed as a function of Pin.

For a solid inclusion with constant Ki, the radial
displacement can be expressed as:

ui D Air C Bi

r 2
D Air; for r � Ri (6)

where Bi must be zero because otherwise ui would
be infinite at r D 0. Ai can be obtained from Eq. 3
using the boundary condition ¦ rr

i jrDRi D �Pin. The

final solutions for the radial displacement and stress
distribution in the inclusion are:

ui D r.P0 � Pin C Ki
i/=.3Ki/; for r � Ri (7)

¦ tt
i D ¦ rr

i D �Pin; for r < Ri (8)

That is, the stress inside the spherical and elastically
isotropic inclusion is uniform and isotropic. The
shear modulus of the inclusion phase does not play
a role in determining the radial displacement and
pressure in the inclusion. Defining RŁi to be the
radius of the inclusion when Pin D Pout at T , RŁi can
be found by letting Pin D Pout in Eq. 7. It can be
found that
Ri � Ri0

Ri0
D ui

Ri0

þþþþ
rDRi

D 
i

3
� Pin � P0

3Ki
(9a)

and
Ri � RŁi

Ri
D ui � uŁi

r

þþþþ
rDRi

D Pin � Pout

3Ki
(9b)

For a liquid or gas inclusion, clearly Eq. 8 is valid.
Eqs. 9a and 9b are valid for a liquid inclusion with
constant Ki. For a gas inclusion, Eqs. 9a and 9b do
not apply because Ki depends on P . For an ideal
gas inclusion, using its equation of state .PinVi=T D
P0Vi0=T0/, the volume (or radius) change of the
inclusion is easy to obtain:
∆Vi

Vi0
D Vi

Vi0
� 1 D P0T

PinT0
� 1 ³ 3.Ri � Ri0/

Ri0
(10)

For the host phase, the radial displacement uh is
given by Eq. 2 where Ah and Bh are two constants
to be solved from Eq. 3 and the following boundary
conditions:

¦ rr
h jrDRi D �Pin; and ¦ rr

h jrDRh D �Pout (11)

The solutions for Ah and Bh are:

Ah D 1

3Kh

�
.Pin�Pout/

1�x
� .Pin � P0/C Kh
h

½
(12)

Bh D .Pin � Pout/

4Gh.1� x/
R3

i (13)

where x D R3
i =R3

h ³ R3
i0=R3

h0. Replacing Ah and Bh

into Eqs. 2–4 leads to:

uh D r

3Kh

�
.Pin � Pout/

1� x
C Kh
h C .P0 � Pin/

½
C .Pin � Pout/R3

i

4Gh.1� x/r 2
; for Ri � r � Rh (14)
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¦ rr
h D

�
.Pin � Pout/

1� x
� Pin

½
� .Pin � Pout/R3

i

.1� x/r 3
;

for Ri � r � Rh (15)

¦ tt
h D

�
.Pin � Pout/

1� x
� Pin

½
C .Pin � Pout/R3

i

2.1� x/r 3
;

for Ri � r � Rh (16)

and
∆Vi

Vi0
³ 3uh

Ri0

þþþþ
rDRi

D 1

Kh

�
P0 � Pin C .Pin � Pout/

1� x
C Kh
h

½
C 3.Pin � Pout/

4Gh.1� x/
(17)

Therefore, the stress in the spherical and elastically
isotropic host is neither uniform nor isotropic. There
is deviatoric stress that changes with r . If Pin is
known, ∆Vi=Vi0 can be calculated using Eq. 17.
Comparing Eq. 17 (by letting ∆T D 0) with eq. 6 of
Tait [10] reveals errors in his eq. 6. The difference
between the right-hand side of Eq. 17 above and
that of Tait’s eq. 6 is .P0 � Pout/=Kh. This difference
arises because Tait did not correctly account for the
reference state of zero deformation.

Eq. 15 can be rewritten as:

∆Vi

Vi0
³ P0 � Pout

Kh
C 
h

C .Pin � Pout/

1� x

�
x

Kh
C 3

4Gh

½
(18)

Comparing the above equation of relative change of
inclusion volume with that of host volume without
the inclusion:
∆Vh

Vh0
³ P0 � Pout

Kh
C 
h (19)

it can be seen that when x is small, ∆Vi=Vi0 �
∆Vh=Vh0 by 0:75.Pin � Pout/=Gh.

3.3. Inclusion pressure for several simple cases

To completely determine the stress and strain
distribution, Pin must be determined. The method of
solution for Pin depends on whether the inclusion is
a void (vacuum), an ideal gas, a condensable fluid, or

a mineral. It also depends on whether there are phase
transitions or reactions inside the inclusion [8–10] or
reactions between the inclusion and the host. Several
simple cases are discussed below and cases involving
reactions and phase transitions will be discussed in
later sections.

(1) If the inclusion is a vacuum (void, or cavity),
the initial equilibrium pressure P0 must be zero.
The inclusion pressure Pin is always zero. If Pout is
given, the radial displacement, inclusion volume and
the stress field can be calculated using Eqs. 14–16.
Heating up the host mineral at zero pressure, the
inclusion volume expands exactly the same way as
the host and the stress in the host adjacent to the
inclusion is zero. Pressurizing the host isothermally,
the void volume decreases and there is a stress field
in the host adjacent to the void.

(2) If an ideal gas is included, combining Eq. 10,
Eq. 14 at r D Ri, and the equation uijrDRi D uhjrDRi

(this displacement continuity equation has a simple
form because u is defined as displacement relative to
the initial condition instead of the zero stress), and
after some manipulation, Pin=P0 satisfies and can be
obtained from:�

x P0

.1� x/Kh
C 3P0

4.1� x/Gh

½�
Pin

P0

�2

C
�

1C 
h C P0

Kh
� Pout

1� x

�
1

Kh
C 3

4Gh

�½
Pin

P0

� T

T0
D 0 (20)

(3) For a solid or liquid inclusion with no phase
change and no reaction with the host, combining
Eq. 7, Eq. 14 at r D Ri, and uijrDRi D uhjrDRi leads
to:
P0 � Pin C Ki
i

Ki
D

1

Kh

�
.Pin � Pout/

1� x
C Kh
h C .P0 � Pin/

½
C 3.Pin � Pout/

4Gh.1� x/
(21)

Knowing inclusion and host properties, P0, and Pout,
Eq. 21 can be used to obtain Pin. The dependence
of Pin on the inclusion size is weak as long as
the inclusion is small. If the inclusion and the host
are of the same phase (i.e., if part of the host
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is considered as an inclusion), then Ki D Kh and

i D 
h in the above equation. Hence, Pin D Pout

and the whole mineral is under uniform isotropic
pressure of Pout according to the above equation, as
expected. If there are several inclusions (they may be
fluid inclusions or solid inclusions) in the same host,
Pin in the inclusions would be the same as long as
the inclusions are far away from each other and have
the same Ki and Þi.

Eqs. 20 and 21 can also be used to estimate the
equilibrium pressure P0 knowing Pin, Pout, and ∆T .
If initially Pin;0 6D Pout;0, then a variation of Eq. 21
is:

Pin D
²
.Pin;0 � Pout;0 C Pout/

�
1

Kh
C 3

4Gh

½
C.1� x/

�
Pin;0

�
1

Ki
� 1

Kh

�
C .
i � 
h/

½¦
ð
�

1� x

Ki
C 3

4Gh
C x

Kh

½�1

(22)

If x ! 0 and only T changed (i.e., P0 D Pout),
combining Eqs. 9a and 21 leads to:

Ri D Ri0

�
1C 
h

3
C .
i � 
h/

3C 4Gh=Ki

½
(23)

Comparing the above equation with the equation of
Gillet et al. ([8], p. 435) for inclusion radius change
due to temperature variation Ri D Ri0[exp.
h/]1=3

reveals a small error in their simplistic treatment of
the temperature effect. For example, for a diamond
inclusion in garnet at P0 D Pout, if T0 D 1400 K and
T D 1000 K, the calculated inclusion volume change
is 0.7% using Eq. 23 but would be 1.2% using the
simple treatment of Ref. [8].

3.4. Calculated stress distribution

Fig. 2a shows calculated stress field for a pyrope
inclusion in a diamond host with P0 D 5 GPa,
Pout D 7 GPa, and ∆T D 20 K. The example
is chosen because both phases are fairly isotropic.
When the pressure on the outer surface of the host
(i.e., the lithostatic pressure) is 7 GPa, the pressure
inside the inclusion is only 6.06 GPa, lower than the
lithostatic pressure by 0.94 GPa (9.4 kbar)! Under
other conditions, the pressure difference can be even
greater. The inclusion pressure hence may not be
interpreted in terms of a depth by simply assuming

Fig. 2. Calculated radial and tangential stress in diamond host.
(A) Stress distribution in a pyrope inclusion .r=Ri < 1/ and
diamond host .r=Ri > 1/ for the elastic case. The elastic prop-
erties are: Þh D 1:65 ð 10�5 K�1, Kh D 444 GPa, Gh D 536
GPa, Þi D 3:13 ð 10�5 K�1, Ki D 173 GPa [19,34,35]. Initial
conditions: T0 D 1400 K, P0 D 5 GPa, Ri0 D 0:01 mm, Rh0 D 1
mm. Then the host phase is brought along the geotherm (10
K=GPa) to Pout D 7 GPa and T D 1420 K. New Pin and Ri

are calculated to be 6.058 GPa and 0:998Ri0. (B) Stress distri-
bution in an unspecified inclusion (hence Ki is not known and
Pin must be specified) and diamond host including both plastic
.1 � r=Ri � 1:5/ and elastic .r=Ri ½ 1:5/ regions. T D T0,
Yh D 9 GPa [36], Ki D 173 GPa, Rp=Ri D 1:5, Rh=Ri D 100,
Pout D 0 GPa, and Pin D 13:3 GPa.

lithostatic pressure for the inclusion. The radial stress
in the host changes continuously from �Pin to�Pout,
whereas the tangential stress is discontinuous at the
inclusion–host interface. The tangential stress and
the radial stress are different in the host adjacent to
the inclusion. That is, there is deviatoric stress. The
difference between the tangential and radial stresses
may cause plastic deformation or failure of the host
mineral [16], to be discussed in the next section.
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The length scale over which the radial and tangential
stresses vary is about the same as the radius of the
inclusion. More precisely, for small x (the volume
fraction of the inclusion), j¦ rr

h C Poutj and j¦ tt
h C Poutj

decreases to 1=2 of the corresponding value at the
interface when r � Ri D 0:26Ri , and to 1=8 of the
value at the interface when r � Ri D Ri. The ‘mean
host pressure’ is defined as:

� .¦
rr
h C 2¦ tt

h /

3
D .Pout � x Pin/

.1� x/
³ Pout (24)

which is a constant throughout the host phase. The
approximation in the above equation is valid if x is
small. The density of the host phase is independent
of r despite the stress field, and corresponds to a
density at P D Pout.

3.5. A simple case of elastic anisotropy

The assumption of elastic isotropy for the host
mineral is important for simple solutions to be ob-
tained and is often employed [8–12], but, to my
knowledge, its accuracy has never been examined
before. Recently, Schmidt et al. [17] carried out ex-
periments to examine the variation of volume and
pressure of an H2O fluid inclusion in quartz as a
function of temperature and pressure (I.-M. Chou,
pers. commun.). The pressure inside the inclusion is
determined by observing the complete disappearance
of the vapor phase in a vapor–liquid inclusion by
varying the temperature at a given host pressure. The
pressure in the inclusion is the saturation pressure at
the given temperature. They found that for an initial
condition of Pout;0 D 0:1 MPa and Pin;0 D 2:45 MPa
at T0 D 222:9ºC, Pin D 1:91 MPa when Pout D 253:5
MPa and T D 210ºC. Since the mass of H2O in the
inclusion is conserved (ignoring water diffusion into
quartz at such low temperatures), the percentage of
volume variation of the inclusion can be calculated
to be about �2.0% using the liquid molar volume
variation along the saturation curve. Without con-
sidering the elastic effects, the volume variation of
quartz itself is only �0.7%, not enough to account
for the inclusion volume decrease. Using Eq. 17
but accounting for the initial difference in Pin;0 and
Pout;0, the calculated inclusion volume variation is
�1.2% when elastic effects are considered assuming
elastic isotropy for quartz. The agreement with the

observed �2.0% variation is better, demonstrating
that considering elastic effects is in the right direc-
tion. However, the agreement with the observation is
still not good, suggesting that elastic anisotropy of
quartz may have to be considered. Love [18] gave
a solution for a spherical inclusion in an elastically
anisotropic solid with transverse isotropy about the
radius vector. Even though quartz does not even
possess transverse isotropy, this solution is expected
to approximate the elastic properties of quartz bet-
ter than simple elastic isotropy. After incorporating
the temperature and non-zero initial pressure effects,
the solution for the volume variation of a spherical
inclusion (eq. 30 in [18], p. 165) can be rewritten as:

∆Vi

Vi0
D P0

Kh
C Þh.∆T /C 3

.1� x 0/y 0

ð
�

Pinx 0y 0 � Pout

.n � 0:5/C33 C 2C13
C Pin y 0 � Pout

.n C 0:5/C33 � 2C13

½
(25)

where Ci j ’s are elastic constants [19], n D 0:5[1 C
8.C11 C C12 � C13=C33]1=2 (n D 1:5 for cubic min-
erals but 1.33 for quartz), x 0 D .Ri=Rh/

2n, and
y 0 D .Ri=Rh/

1:5�n . Using the above equation, the
calculated inclusion volume variation is �1.8%,
in good agreement with observed �2.0%. There-
fore, for accurate treatment of the elastic effects
involving an elastically anisotropic host, anisotropy
must be incorporated. Because solutions for elasti-
cally anisotropic materials are few and complex (e.g.
[18]), the following discussion still assumes elastic
isotropy.

4. Beyond elasticity

The difference in Pin and Pout may lead to beyond-
elasticity changes, including (1) viscous relaxation of
the stress when the time scale under consideration
is long, or (2) plastic deformation and fracture when
jPin � Poutj and the deviatoric stress increases on
a short time scale. Following mechanical engineer-
ing literature [16], in this work ‘plastic deformation’
means plastic yield when the deviatoric stress ex-
ceeds the elastic limit and does not mean plastic
flow. Plastic yielding does not relax the stress but
does limit the deviatoric stress. Viscous relaxation
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means viscous flow that relaxes stress. The result of
viscous relaxation is for Pin to become the same as
Pout and for the stress field around the inclusion to
become simply the fluidstatic pressure of Pout. This
section briefly treats these possibilities.

4.1. Stress relaxation due to viscous flow

When Pin 6D Pout and there is a stress distribu-
tion in an inclusion, Tait [10] solved the viscous
flow velocity PRi D .Pin � Pout/Ri=.4�h/ near the
inclusion–host boundary by assuming (1) that the
host is an incompressible Newtonian fluid that flows
radially, and (2) that the host is much more vis-
cous than the inclusion. Using the velocity, he as-
sumed that the characteristic time scale for viscous
relaxation is Ri= PRi and found the relaxation time
scale to be 4�h=.Pin � Pout/. This relaxation time
scale is in error because particles in the host phase
around the inclusion do not have to flow a distance
of Ri to release the stress; instead, particles only
have to move such a distance that the volume of
the inclusion changes from that corresponding to
Pin to that corresponding to Pout. This distance is
∆Ri D RŁi � Ri D .Pin � Pout/Ri=.3Ki/ (Eq. 9b) for
a solid or liquid inclusion with constant Ki (assum-
ing ∆Ri=Ri − 1). Hence the relaxation time scale
for the inclusion–host system is:

−h D ∆Ri= PRi D 4�h=.3Ki/ (26)

Compared with the viscous relaxation time scale of
the host phase without the presence of inclusions,
the Maxwell relaxation time scale �h=Gh [20], the
relaxation time scale for the inclusion–host system is
4Gh=3Ki times that of the host alone.

If the inclusion is an ideal gas, the inclusion
volume must change from Vi to Vi.Pin=Pout/ for
it to relax to Pout. The radius change is ∆Ri D
Ri[.Pin=Pout/

1=3�1]. Hence, the relaxation time scale
is:

− D ∆Ri

PRi
D 4�h

ð
.Pin=Pout/

1=3 � 1
Ł

Pin � Pout
(27)

For a typical upper mantle mineral olivine at
¾1600 K with a viscosity of 1021 Pa s (e.g. [21])
and a typical solid inclusion bulk modulus of ¾1011

Pa at 1600 K [22], the relaxation time scale is 1010

s ³ 400 years, a short time geologically. Hence the

stress in an olivine crystal that contains inclusions is
expected to be lithostatic in much of the upper man-
tle with normal temperatures. However, if a mantle
xenolith is brought up rapidly by volcanic eruption,
there would not be enough time for stress relax-
ation [10] and there will be anisotropic stress in an
inclusion-bearing olivine crystal due to rapid decom-
pression. This stress field should not be confused
with the stress field in the mantle.

Mineral viscosity increases rapidly with decreas-
ing temperature. For example, Karato [13] estimated
that at 700ºC, mantle mineral viscosity is ¾1032

Pa s. At such a viscosity, the stress relaxation time
scale would be 4 ð 1013 years, 4 orders of magni-
tude greater than the age of the earth. Hence under
such low temperatures, anisotropic stress would be
common if there are inclusions in a mineral. For
diamond, garnet and many other minerals, the vis-
cosity is not well-known but presumably very high
[13]. Hence viscous relaxation for inclusions in these
minerals is often negligible.

4.2. Plastic deformation

The development in this subsection follows that
of Hill [16]. There are two commonly used criteria
of plastic yield for a solid: the Tresca criterion and
the von Mises condition (e.g. [16]). The two yield
criteria do not differ much (a few percent) and
ease of application is often the deciding factor in
choosing a yield function. Using the Tresca criterion,
plastic deformation occurs when j¦ tt

h � ¦ rr
h j ½ Yh

where Yh is the yield strength of the host mineral.
Plastic deformation limits j¦ tt

h � ¦ rr
h j to be Yh. Since

j¦ tt
h � ¦ rr

h j is greatest at the interface between the
inclusion and host, plastic deformation begins when

j¦ tt
h � ¦ rr

h jrDRi D
3jPin � Poutj

2.1� x/
D Yh (28)

The first equality in the above equation is obtained
from Eqs. 15 and 16. As jPin�Poutj increases further,
j¦ tt

h �¦ rr
h j is still Yh but it no longer equals 1:5jPin�

Poutj=.1� x/. The plastic yield region expands at the
expense of the elastic region. Define Rp.� Rh/ to
be the elastic–plastic boundary such that the region
Ri < r < Rp undergoes plastic deformation and the
region Rp < r < Rh undergoes elastic deformation.
In the elastic region .Rp � r � Rh/, Eqs. 3 and 4
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apply in which the constants A and B can be solved
using the following two boundary conditions:

¦ rr
h jrDRh D �Pout (29)

.¦ tt
h � ¦ rr

h /rDRp D ŽYh (30)

where Ž D sign.Pin � Pout/ that equals 1 when Pin �
Pout > 0, and equals �1 when Pin � Pout < 0.
Obtaining A and B, and letting y D .Rp=Rh/

3, then:

¦ rr
h D �Pout � 2ŽYh

3

 
R3

p

r 3
� y

!
; Rp � r � Rh

(31)

¦ rr
h D �Pout C 2ŽYh

3

 
R3

p

2r 3
C Y

!
; Rp � r � Rh

(32)

In the plastic region .Ri � r � Rp/, the condition
that ¦ tt

h � ¦ rr
h D ŽYh leads to:

@¦ rr
h

@r
D 2.¦ tt

h � ¦ rr
h /

r
D Ž2Yh

r
(33)

Solving the above equation,

¦ rr
h D 2ŽYh ln r C Ch (34)

where Ch is a constant that can be determined
from the boundary condition (continuity for ¦ rr

h )
¦ rr

h jrDRp�0 D ¦ rr
h jrDRpC0:

2ŽYh ln Rp C Ch D �Pout � 2ŽYh

3
.1� y/ (35)

Obtaining Ch leads to:

¦ rr
h D 2ŽYh ln

r

Rp
� 2Ž

3
Yh.1� y/� Pout;

Ri � r � Rp (36)

¦ tt
h D 2ŽYh ln

r

Rp
� 2Ž

3
Yh.1� y/C ¦Yh � Pout;

Ri � r � Rp (37)

Fig. 2b shows a calculated case for stress distribution
in diamond next to an unspecified inclusion when
both plastic and elastic deformations are present.
In the region Rp � r � Rh, the stress distribution
is elastic with ‘mean pressure’ identical to Pout. In
the region Ri � r � Rp, the stress distribution is
plastic with ‘mean pressure’ increases toward the
inner surface.

Elastic strain disappears after removal of stress.
Hence elastic strain depends only on the cur-
rent stress state, and is independent of the elastic
stress=strain history. However, if plastic deforma-
tion occurs, residual strain remains after removal of
stress. Hence the exact strain state depends not only
on the present stress state but also on the plastic
stress=strain history of the solid. This complexity
makes the strain–stress relation, and the analytical
solution for the strain almost impossible to treat for
complex stress history involving plastic deformation.
The above solutions of the elastic and plastic prob-
lems apply only when there was no prior residual
strain (that is, no prior plastic deformation).

4.3. Fractures

Fractures develop when the stress intensity factor
or the crack extension force exceeds a critical value
[23]. Because an isotropic spherical inclusion is un-
der isotropic stress but the host next to the inclusion
is under deviatoric stress, fractures are expected to
develop in the host under the right conditions, but
not the inclusion. When the inclusion is not spher-
ical, stress is concentrated at sharp corners. Hence
fractures more often develop from these sharp cor-
ners. Fractures in the host phase radiating from the
inclusion are often observed, e.g., [8]. In many cases,
these fractures are decompressional cracks.

In studying inclusions in garnet crystals brought
up by ultramafic diatremes from the Four Corners
area, it was found (Wang, Ph.D. thesis, in prep.)
that radiating fractures in the garnet host often de-
velop around composite inclusions (consisting of
carbonate, amphibole, mica, etc.), pyroxenes, and
olivine, but not around spinel or rutile inclusions.
That is, fractures develop when Ki < Kh but not
when Ki > Kh. Because radiating cracks form when
Pin > Pout, that the cracks occur only when Ki < Kh

means that Pout < P0. Hence these are decompres-
sional cracks. Furthermore, calculations show that
the decompression is roughly adiabatic or isother-
mal. If the decompression is accompanied by tem-
perature decrease along a typical geotherm (such
as slow upward tectonic motion due to obduction),
calculations show that the pressure and temperature
effects would roughly cancel out for an olivine inclu-
sion in garnet host so that Pin would be roughly the
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same as Pout and there would be no radiating cracks.
(For other inclusions such as pyroxene inclusion, the
pressure and temperature effects do not cancel out.)
This example shows that it is possible to infer from
the presence of decompressional cracks that the gar-
net host decompressed rapidly and roughly isother-
mally. Of course, it is already known from field rela-
tions that the garnet crystals were brought up rapidly
be ultramafic diatremes. The investigation of the
cracks confirms this understanding and also shows
the potential to constrain whether the ascent is rapid
or slow by understanding the formation of cracks.

5. Phase equilibria and reactions in inclusions:
graphite inclusion in diamond

If the inclusion can react with the host or undergo
a phase transition, the extent of the reaction or phase
transition, the inclusion pressure, and the stress field
in the host affect one another. In this section, the
case of a graphite inclusion in a diamond host is con-
sidered. For simplicity, only elastic deformation is
considered, diamond and graphite are assumed elas-
tically isotropic, and graphite inclusion is assumed
to be spherical. Suppose that initially in a subducting
slab there is some graphite. When the pressure is
high enough, diamond grows from graphite. In this
process, a piece of graphite is included in a diamond
crystal at a T–P condition that roughly corresponds
to graphite–diamond equilibrium. The diamond crys-
tal then goes to greater pressure with the subducting
slab. As long as the host diamond crystal maintains
its integrity, the graphite inclusion cannot completely
change into diamond. Otherwise, the inclusion would
occupy much less volume (due to the higher density
of diamond) and there would be free space in the
inclusion. That would mean a zero pressure in the
inclusion and hence the conversion of diamond back
to graphite. That is, the graphite inclusion cannot
completely convert to diamond even when (T , Pout)
is well into the stability field of diamond, contrary to
what one may expect. Hence, the graphite–diamond
two-phase equilibrium at the inclusion–host bound-
ary controls the pressure in the inclusion.

Unfortunately, the chemical potential of a stressed
solid is still under debate. For example, Kamb [24]
avoided using the term ‘the chemical potential of a

stressed solid’, and derived that the chemical poten-
tial of the component of the solid dissolved in a fluid
(not of the component in the solid itself) that is in
contact with surface k of the solid is:

¼k D ¼0 C PkSV CwSV0 (38)

where ¼0 is the chemical potential of the compo-
nent in the solid under zero stress .P D 0/, Pk is
the fluid pressure applied normal to the solid sur-
face k and Pin for diamond host next to a graphite
inclusion, SV and SV0 are the molar volume and
unstressed molar volume, and w is the strain en-
ergy density (w D 0:5

P
¦i j ei j with ¦i j and ei j

being the components of the stress and strain ten-
sors). For fluidstatic pressure P , Eq. 38 reduces to
¼ D ¼0C PSV C0:5P.SV0�SV / D ¼0C P.SV0CSV /=2.
That is, wSV ¾ 0:5P.SV0�SV / and is typically a small
term (because ei j ’s are − 1). Hence, to a first order
approximation, ¼k D ¼0CPkSV . For a graphite inclu-
sion in a diamond host, ¼dia

C jrDRi ³ ¼dia;0
C C PinSV dia

C .
Because carbon chemical potential in graphite also
depends on Pin as ¼gra

C D ¼gra;0
C C PinSV dia

C , the phase
equilibrium at the inclusion–host boundary can be
roughly treated as isobaric equilibrium. Therefore,
Pin can be calculated simply from the isobaric phase
equilibrium between graphite and diamond. This Pin

depends only on T but not on Pout. When Pin 6D Pout,
the chemical potential of carbon on the outer surface
of the diamond host would be different from that
in the inclusion. Therefore, the whole inclusion–host
system is not in chemical equilibrium even when the
inclusion and the adjacent host are in equilibrium.

Bartholomeusz [25], however, argued that the
derivations of Kamb [24] and other similar deriva-
tions overlooked energy changes associated with
maintaining fluid pressure. Because Bartholomeusz
did not provide an explicit simple formula for the
chemical potential, application of his theory would
require second-guessing. Therefore, the treatment of
Kamb [24] is used in the following discussion.

Consider a graphite inclusion in diamond host
formed at (T0 D 1497:15 K, P0 D 5 GPa). The phase
boundary is at P D 1:94 C .T � 273:15/=400 [26].
If the inclusion–host system is brought isothermally
to a Pout D 8 GPa, the inclusion pressure would be
6.44 GPa if there was no phase transition. However,
if phase equilibrium at the inclusion–host boundary
is reached, Pin depends simply on T and stays at 5
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GPa. If the same inclusion–host system is brought
instead along a geotherm of 10 K=GPa to 1527.15
K and Pout D 8 GPa, Pin would change to 6.50
GPa without a phase transition but only change
by 0.075 GPa to 5.075 GPa if phase equilibrium
at the inclusion–host boundary is reached. Because
mechanical equilibrium is reached rapidly but phase
transition can be slow, the actual Pin at a given
instant may lie between 6.50 and 5.075 GPa.

Knowing Pin, it is possible to calculate stress dis-
tribution, radial displacements, and volume of the
inclusion. Since diamond and graphite interconvert,
the mass of graphite in the inclusion is not necessar-
ily the same as the initial mass. To avoid confusion,
I define two inclusion volumes: one is the volume
associated with the initial graphite mass, the virtual
inclusion volume Vvi (or radius Rvi); the other is the
actual volume of the graphite inclusion Vai (or radius
Rai/. The solutions for radial displacements become:

ui D r.P0 � Pin C Ki
i/

3Ki
; for r � Rai (39)

uh D r

3Kh

�
.Pin � Pout/

1� x
C Kh
h C .P0 � Pin/

½
C .Pin � Pout/R3

i

4Gh.1� x/r 2
; for Rvi � r � Rh (40)

Using Eq. 39 at r D Rai and Eq. 40 at r D Rvi leads
to:

ui

Rai

þþþþ
rDRai

D 1� F1=3 Ri0

Rai
D P0 � Pin C Ki
i

3Ki
(41)

1� Ri0

Rvi
D 1

3Kh

�
P0 � Pin C Pin � Pout

1� x
C Kh
h

�
C Pin � Pout

4Gh.1� x/

�
Rai

Rvi

�3

(42)

where F.D Mai=Mi0/ is the mass fraction of graphite
still remaining in the inclusion (if F > 1, then
some diamond transformed into graphite) and can be
related to other parameters as:�

Rvi

Ri0

�3

D F
SVi;gr

SVi0;gr
C .1� F/

SVvi;dia

SVi0;gr
(43)

F , Rai and Rvi can be solved simultaneously from
Eqs. 41–43 using Pin from phase equilibrium con-
straint. A numerical example is given in Fig. 3,

Fig. 3. Calculated mass and volume ratios of graphite in the
inclusion as a function of Pout. T0 D 1497 K, P0 D 5 GPa, Ri0 D
0:01 mm, Rh0 D 1 mm. The host diamond is brought along the
geotherm (10 K=GPa) to greater pressures. Þh D 1:86 ð 10�5

K�1, Kh D 444 GPa, Gh D 536 GPa, Þi D 3:24 ð 10�5 K�1,
Ki D 161 GPa [19,34,35]. Mass ratio .F/ variation with Pout is
shown as the solid line. Shown are also the variations of virtual
and actual inclusion volumes relative to the initial inclusion
volume (short and long dashed lines). The calculations are based
on Kamb’s formulation of the chemical potential.

which shows how F D Mai=Mi0, Vai and Vvi vary
as a function of Pout. At Pout D 9 GPa, the mass of
graphite inclusion has decreased by only 4%. During
the phase transition process, Pin is not known, but
Pin, Rai and Rvi can be solved simultaneously from
Eqs. 41–43 from the extent of phase transition F .

Most of us are used to considering phase equilib-
ria under isobaric and isothermal conditions. Under
such conditions, a phase transition between con-
densed phases occurs at a single temperature for a
given pressure or at a single pressure for a given
temperature in a one-component system (ignoring
kinetics). That is, as temperature or pressure varies,
the phase transition is sharp, complete and total.
However, inside an inclusion, due to the protection
of the host phase and the volume constraint, the
pressure in the inclusion can be different from the
pressure on the outside surface of the host. The
transition between condensed phases in a one-com-
ponent system is partial and almost never goes to
completion. Hence, once a piece of graphite is in-
cluded in diamond, the graphite will survive almost
all conceivable T–P paths unless the host diamond
relaxes (flows viscously) or fractures into pieces.



220 Y. Zhang / Earth and Planetary Science Letters 157 (1998) 209–222

This example demonstrates differences in the phase
equilibria of inclusion–host systems and those under
isobaric and isothermal conditions. To a first-order
approximation, the inclusion mass and volume can
be regarded as constant, and the thermodynamics
and phase equilibria in inclusion–host systems are
similar to those under isochoric (e.g., [8–10]) and
isothermal conditions instead of the more familiar
isobaric and isothermal conditions. An instructive
diagram for examining isochoric phase transitions
is a temperature–volume diagram (instead of a T–P
diagram) if there is a large variation in T, which
is similar to the pressure–entropy diagram used by
Asimow et al. [27] to examine isentropic melting.
However, in detail, the process is not perfectly iso-
choric, and volume change must also be considered
for more accurate description of the phase transition.

6. Thermobarometry using inclusion–host
systems

The above example, graphite in diamond, shows
the complexity of phase transitions in inclusions.
There are many other possible phase transitions and
reactions in an inclusion or between an inclusion and
a host. For example, for an orthopyroxene inclusion
and a garnet host, there are at least two reactions
between the inclusion and the host. One reaction is
the Fe2C–Mg exchange. Because the cation exchange
does not have a significant volume effect, its effect
on the inclusion pressure is ignored in the following
consideration (even though small volume effect may
affect the inclusion pressure in a significant way).
The second reaction between the inclusion and the
host is the following:
Mg2Si2O6.opx/CMgAl2SiO6.opx/

, Mg3Al2Si3O12.gt/ (44)

This reaction has a large ∆V . The right hand side
has a higher density and smaller volume than the
left hand side. Therefore, as pressure increases, the
Mg3Al2Si3O12 component dissolved in orthopyrox-
ene decreases (that is, the Al content in orthopy-
roxene coexisting with garnet is a barometer [28])
if the orthopyroxene is not an inclusion. However,
when orthopyroxene is an inclusion in garnet, us-
ing Kamb’s theory, the Al content in orthopyroxene

inclusion will be related to the inclusion pressure,
instead of the host pressure. The difference between
Pin and P0 depends on the activity–composition rela-
tion and the partial molar volume of each component
in both phases.

Inclusions in minerals have often been used to in-
fer temperature and pressure. Owing to protection of
inclusions by the host phase, some applications are
valid while others are questionable. It is necessary to
understand the elastic effects on phase equilibrium to
determine whether a specific kind of equilibrium can
be used to infer T–P conditions. Several applications
can be distinguished:

(1) If the temperature is high (e.g., T ½ 1000ºC),
stress around an inclusion is relaxed in a short time
scale for typical mantle minerals with relatively low
viscosity. Therefore, inclusion–host equilibrium can
be treated in the usual manner and thermobarome-
try can be used to infer the peak temperature and
pressure or the closure P–T. (If the inclusion–host is
rapidly brought to the surface, there will be a stress
field around the inclusion due to the decompression.
This stress field is not necessarily that in the mantle.)
However, for a mineral such as diamond, the viscos-
ity is not known and it is not clear whether deviatoric
stress would relax in a short time (� 108 years).

(2) For most metamorphic rocks with tempera-
tures below 800ºC, for a part of the upper mantle
that is relatively cold (� 800ºC), and for some min-
erals with very high viscosity (possibly garnet and
diamond), the host phase may not relax viscously
at the peak temperature and pressure. Under such
conditions, the following statements can be made.

(a) A valid application is to use the inclusions to
infer or constrain the formation conditions (instead
of equilibrium after formation) if there is no reaction
between the host and the inclusions or if the reac-
tion is so slow that original inclusion composition is
preserved in the core. For example, separate single-
phase silicate and sulfide inclusions in diamond do
not react with diamond. Therefore, they can be used
to infer or constrain the P–T conditions of formation
for the part of diamond next to the inclusion (e.g.
[29,30]). Another example is coesite inclusion in gar-
net [6,7] and other separate inclusions in garnet [31].

(b) If a single inclusion contains several phases,
the equilibria between the several phases can be used
to infer T (peak temperature or closure temperature)
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and Pin at the T . However, the inclusion pressure
may not have a depth significance.

(c) If the host and the inclusion can react, the ob-
served compositions of the inclusion and host reflect
the long Pout–Pin–T history experienced by the pair
and cannot be simply used to infer P0–T0 of forma-
tion or the peak Pout–T . Hunter and Smith [32] and
Smith and Barron [33] used the Fe–Mg exchange
equilibrium between orthopyroxene inclusion and
garnet host and the Al content in orthopyroxene in-
clusion in garnet to infer T–P conditions or paths
for the inclusion–host pairs. However, because their
estimated temperatures are low (500 to 800ºC), vis-
cous relaxation in the garnet host is negligible. Using
Kamb’s thermodynamic formulation, the estimated
pressures are inclusion pressures that do not have
depth significance. Such T and P may not be used to
construct a geotherm.

(d) When there are several separate inclusions in
a host mineral, the pressure in one inclusion (such as
an orthopyroxene inclusion in a garnet) may not be
the same as the pressure in another inclusion (such as
a clinopyroxene inclusion in the same garnet) unless
the host has viscously relaxed. Therefore, one may
not combine several inclusions to solve for both peak
T and P.

Use of the above understanding can help us to
correctly apply thermobarometry methods and to
avoid incorrect applications. Understanding of how
inclusion pressure depends on the initial (T0, P0) and
the new (T , Pout) may eventually lead to methods ca-
pable of inferring both (T0, P0) and (T , Pout). Before
such an understanding, caution must be exercised in
such applications.

7. Conclusions

Mechanical and phase equilibria involving
inclusion–host phases are complicated. As the tem-
perature and=or pressure on the host phase vary, the
pressure in an inclusion may become different from
the host pressure unless the host mineral relaxes.
Each inclusion is at uniform isotropic stress but dif-
ferent inclusions may have different pressures. The
host is anisotropically stressed. In the elastic regime
of deformation, there is a gradient in the radial and
tangential stress, but the ‘mean pressure’ of the host

is uniform. In the plastic region, there is a gradient in
radial, tangential and ‘mean pressure’ in the host. At
normal mantle temperatures and for normal mantle
minerals, it is expected that stress relaxation through
viscous flow is the norm. However, at temperatures
below 800ºC or for minerals with high viscosity,
stress relaxation is not expected to be effective. If
stress does not relax, phase transition in an inclusion
can be roughly treated as isochoric and isothermal
transitions. Even in a one-component system, the
phase transition is partial and almost never goes to
completion.

Caution must be exercised in applying inclusion–
host equilibrium to infer temperature and pressure.
If there is no reaction between the host and the
inclusion, inclusions may be used to infer forma-
tion conditions. If the temperature is high enough
and viscous relaxation is rapid, inclusion–host pairs
can be used to infer the closure P–T condition (in-
stead of the formation condition). However, if the
host–inclusion reaction altered the inclusion com-
position and if the temperature is below 800ºC, (1)
the inferred pressure using an inclusion–host pair
may be the inclusion pressure, which may not have
depth significance, and (2) different inclusions can-
not be combined to infer both temperature and pres-
sure. The examples given in this paper demonstrate
the richness of mechanical and phase equilibria in
inclusion–host systems.
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